
Restoration Monitoring Approaches: Lessons From California

Eric D. Stein – Southern California Coastal Water Research Project

Can Monitoring Help Us Judge Success?

- What is success?
- How does our concept of success change over time?
- What tools and approaches are most effective?

Success: An Unclear, Subjective Descriptor of Restoration Outcomes

Joy B. Zedler

Ecological Restoration 2007

The pathway of restoration is often slow and not necessarily smooth. In addition, people involved will evaluate a project as a success or failure depending on their interests as well as specific measurements used to evaluate.

Assessments of success depend on perspective, goals, and time

Lessons Learned in California

Success is in the eye of the beholder

Collaboration is key to gauging success

Evaluation of success requires context

Meaningful conclusions about success take time

None of it matters if you can access and interpret the data

Success is in the Eye of the Beholder

The definition of success depends on the functions prioritized for the restoration project; therefore, a function-based monitoring program is essential

Success is Based on the Functions Prioritized by Each Restoration Project

Nekton Habitat	Primary Production
Protected Species Support	Secondary Production
Nutrient Cycling	Sea level rise amelioration and resilience
Bird habitat	Shellfish support
Nursery habitat	Support of vascular plant communities
Wildlife support	

Estuarine Marine Protected Area Monitoring Program (eMPA)

The California Estuarine Marine Protected Area (EMPA) Monitoring Program is an ongoing effort to assess the quality and condition of estuaries statewide.

The program goals are to monitor California estuaries with a standard, comprehensive function-based assessment framework to determine the health of California's estuaries and the efficacy of MPA designation.

Multiple Indicators Can be Used to Assess a Given Ecological Function

Prioritize indicators for inclusion based on functions of interest:

- 1. Key ecological functions
- 2. Designated goals

		Indicators						
	Estuary	Water quality	Water nutrient concentration	General community composition (eDNA)				
S	Nekton Habitat							
tion	Primary Production							
Functions	Secondary Production							
H	Protected Species Support							

Green squares represent the indicators that can be used to evaluate function

		Indicators												
Estuaries		Water quality	Water nutrient concentration	General community composition (eDNA)	Sediment characteristics	Benthic infauna abundance/diversity	SAV/macroalgae distribution	Fish abundance/ diversity	Crab abundance/ diversity	Marsh vegetation distribution/ diversity/ invasives	Marshplain elevation	Sediment accretion rates	Mouth dynamics	General habitat condition
	Nekton Habitat													
	Primary Production													
	Secondary Production													
Sno	Protected Species Support													
unctio	Nutrient Cycling													
em Fı	SLR Amelioration													
Ecosystem Functions	Bird Habitat													
Eco	Shellfish Support													
	Nursery Habitat													
	Support Vascular Plants													
	Wildlife Support													

Estuaries		Indicators												
		Water quality	Water nutrient concentration	General community composition (eDNA)	Sediment characteristics	Benthic infauna abundance/diversity	SAV/macroalgae distribution	Fish abundance/ diversity	Crab abundance/ diversity	Marsh vegetation distribution/ diversity/ invasives	Marshplain elevation	Sediment accretion rates	Mouth dynamics	General habitat condition
	Nekton Habitat													
	Primary Production													
	Secondary Production													
Sno	Protected Species Support													
Ecosystem Functions	Nutrient Cycling													
em Fı	SLR Amelioration													
osyste	Bird Habitat													
Eco	Shellfish Support													
	Nursery Habitat													
	Support Vascular Plants													
	Wildlife Support													

Collaboration is the Key to Gauging Success

Development and application of consistent methods allows for leveraging of efforts

Buy-in among all agencies and partners is important to developing consensus about success

Standard Monitoring Protocols

Abiotic Factors:

- In-situ water parameters
- Basic water chemistry and nutrients
- Sediment cores

• Biotic Factors:

- Fish surveys, BRUV
- Crab surveys
- Benthic invertebrates

• Estuary Habitat Surveys:

- Estuary Habitat Condition (CRAM)
- Marsh Plain Vegetation and Topo Surveys
- SAV Surveys
- Community Composition Assessments (eDNA):
- SLR Vulnerability and Marsh Plain Accretion Rate Estimates
- Watershed Processes and Stressors:
 - Trash/microplastics
 - Landscape Stressors
 - Historical Habitat Change Analysis

Management Advisory Council

Management Questions Developed by the MAC

- Assessing baseline conditions and subsequent trends of key metrics in EMPAs and non-EMPA estuaries:
 - \checkmark Abundance, distribution, and conditions of habitats
 - ✓ Populations of native, culturally important, and special-status species
 - ✓ Populations of invasive species
- Assessing the impacts of the following:
 - ✓ Conservation status
 - ✓ Recreation
 - Climate change, including sea level rise, ocean acidification, and flow/sediment delivery
 - ✓ Upstream water diversions, pollution, and watershed management
- Developing information to support planning for:
 - ✓ Mouth/inlet management
 - ✓ Restoration, enhancement, and adaptive management
 - Inland migration of habitats
 - ✓ Infrastructure re-alignment

	Management Needs						
	Habitat a	bundance and distribution					
Assessing baseline	Habitat condition						
conditions and	Abundan	Abundance and distribution of native, culturally					
subsequent trends	important, and special-status species						
of key indicators:	Abundance and distribution of invasive species						
	EMPA des	signation					
	Recreation and consumptive human uses						
	Climate change impacts	Aquatic temperatures					
Assessing factors		Sea level rise					
that affect		Ocean acidification					
conditions:		Watershed freshwater and sediment					
		inputs					
	Upstream water diversions						
	Watershed urbanization and agriculture						
	Nature-b	ased climate change adaptation					
Davidanina	Mouth/inlet management						
Developing information to	Habitat restoration, enhancement, and adaptive						
	managem	nent					
support:	Inland/upslope migration of habitats						
	Infrastructure realignment						
Identifying appropri	ate referer	nce locations for estuaries					
Accessing how EMDAs support offshare applacial communities							

Assessing how EMPAs support offshore ecological communities

Partnering with Permitting Agencies

- Incorporate standard protocols to:
 - ✓ assess condition
 - ✓ evaluate alternatives
 - ✓ Identify potential mitigation areas
- Use indicators and protocols in mitigation monitoring requirements and performance standards
- Support and take advantage of the sentinel site/reference site monitoring
- Incorporate data into estuary portal

California Water Quality Monitoring Council & California Estuary Monitoring Workgroup (CEMW)

- California Water Quality Monitoring Council
 - ✓ Established by Ca. Legislature in 2006 (SB 1070)
 - ✓ Co-chaired by Natural Resources Agency and CalEPA
- Two Major Goals:
 - ✓ Improve coordination of water quality monitoring programs in California
 - ✓ Make information more accessible to agencies and the public (web portals)
- California Estuary Monitoring Workgroup

 ✓ improve data sharing and access to help leverage resources
 ✓ share tools and approaches and increase standardization
 ✓ Current priority initiatives
 - Website/catalogue of existing monitoring programs in California
 - Develop statewide guiding questions and conceptual models

Evaluation of Success Requires Context

There needs to be a common set of sentinel sites to help contextualize sitespecific monitoring results

There should be coherence between regional and site-based monitoring

Successful Relative to "What": Setting Expectations

Sentinel site
 ✓ Reference sites

Ambient condition

• Regional/watershed goals

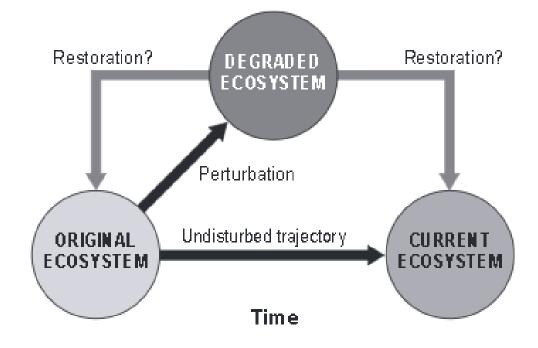


Fig. 1.5 Time changes an undisturbed ecosystem, making targets from the past hard to determine.

Harris and Van Diggelen 2006

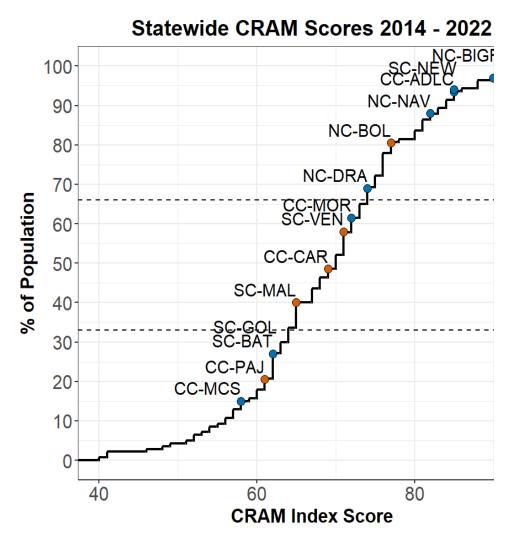
Building a Sentinel Site Network

Sentinel site: Wetlands that are designated for long-term monitoring to track ecological condition through time, evaluate the effect of regional trends in external conditions/stressors, and as a basis of comparison (context) for restoration or mitigation sites

Three categories:

- 1. **Reference** sites that reflect the least altered wetlands in the landscape, and often the sites used to compare reference conditions for project-specific monitoring (*not all sites will be reference for all functions*).
- Restoration sites that have been or are presently being restored. These sites have undergone large-scale restoration and are sites that can be tracked over time to understand their long-term ecological progression.
 Impacted/Degraded sites that are identified to be impacted by or at risk of
- Impacted/Degraded sites that are identified to be impacted by or at risk of impact from factors such as a major development project. These sites could also be heavily degraded.

Defining Reference


Reference: Sites that reflect the least altered wetlands in the landscape, and often the sites used to compare to for project-specific monitoring.

- 1. We are evaluating reference at the **landscape level**, not per indicator. A reference site is not indicator specific, rather a site is chosen more based on *minimal* stressors.
- 2. We want sites with the highest functional performance possible across all archetypes.
- 3. We want **resilient** reference sites, where structure and function remain high regardless of stress.
- 4. The criteria for reference may be region specific.

Context for Gauging Success

Ambient conditions

Reference conditions

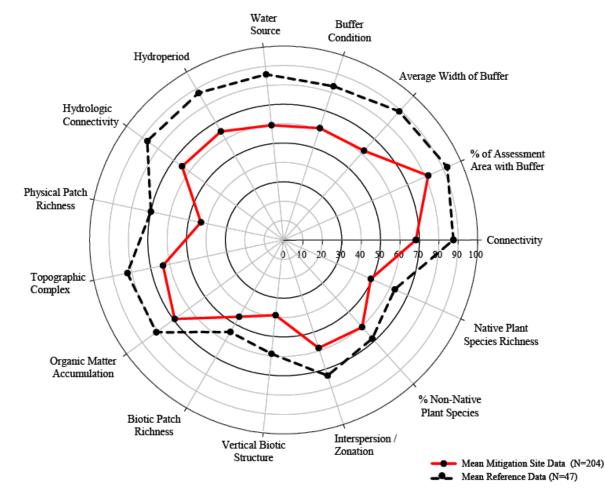
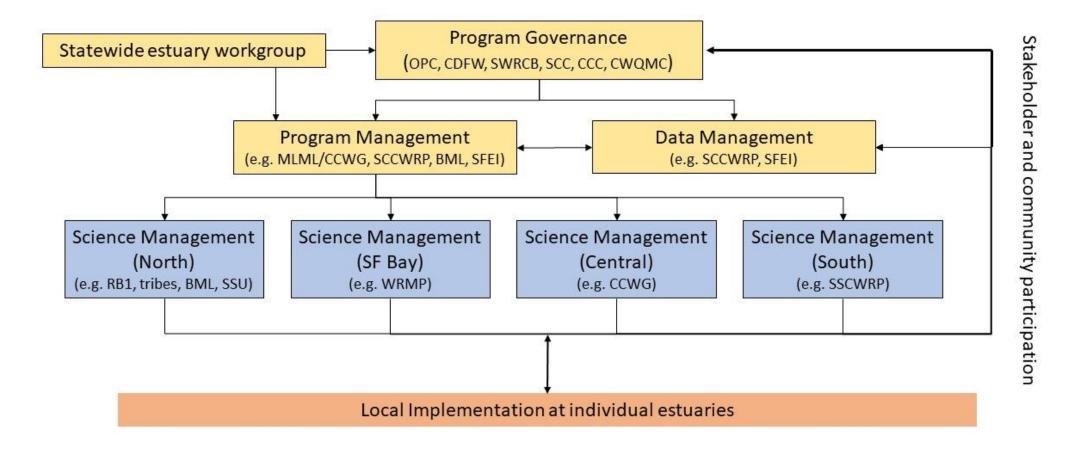


Figure 46. Mean percentage scores for each CRAM metric for mitigation sites (N=204) and reference sites (N=47).

Different Ways to Gauge Performance

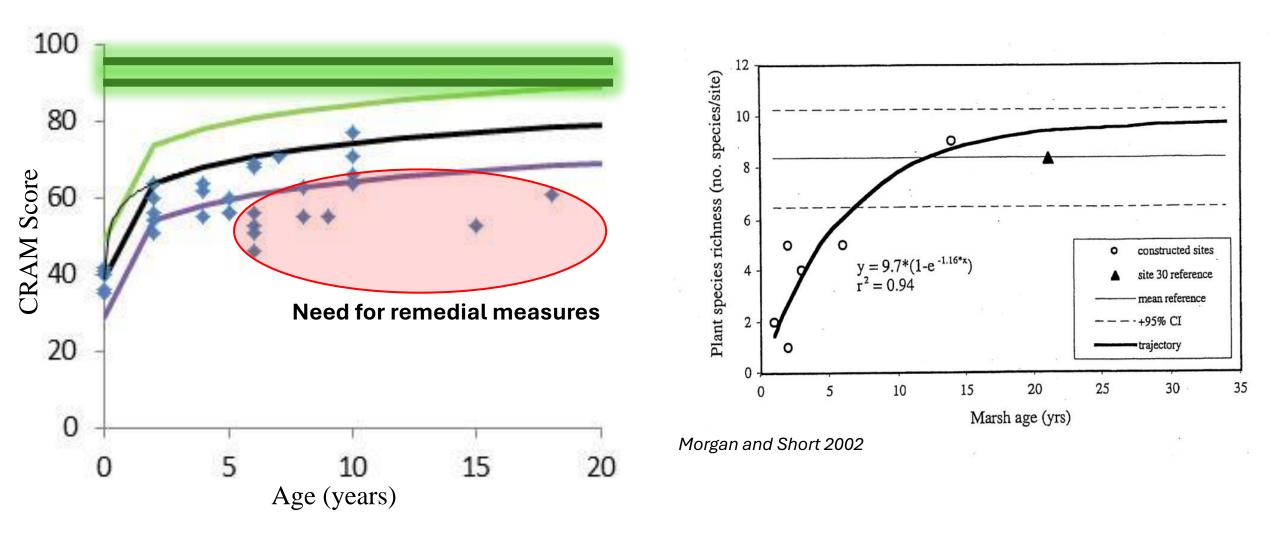


A: Improvement from baseline

B: Comparison to ambient

C: Comparison to reference

Coherence Across Different Levels of Monitoring

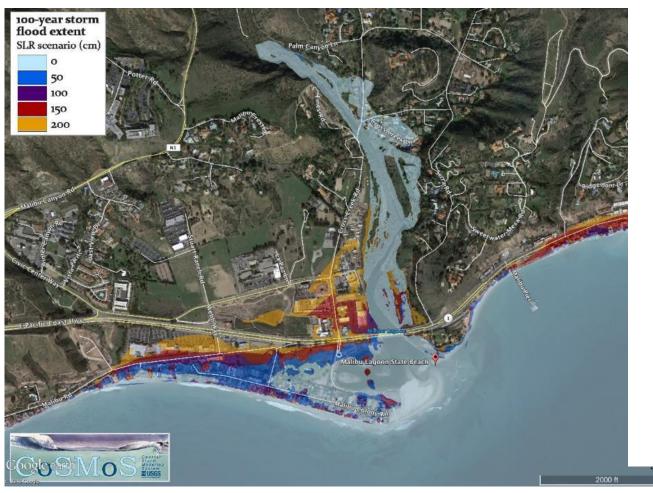


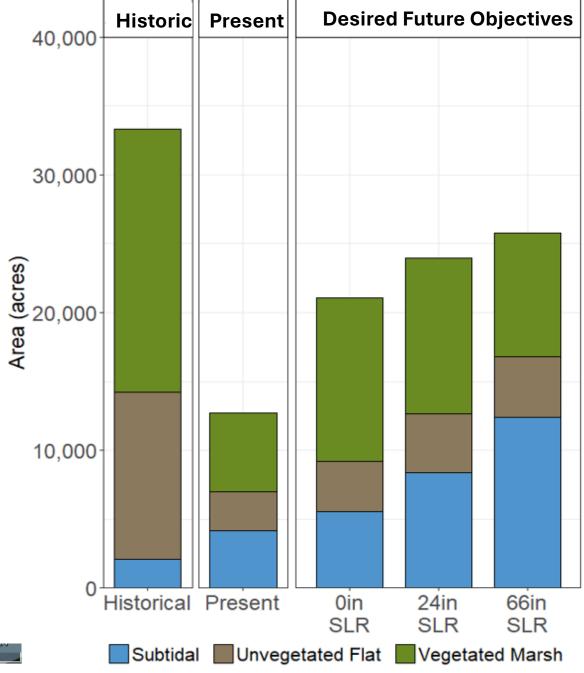
Meaningful Conclusions About Success Take Time

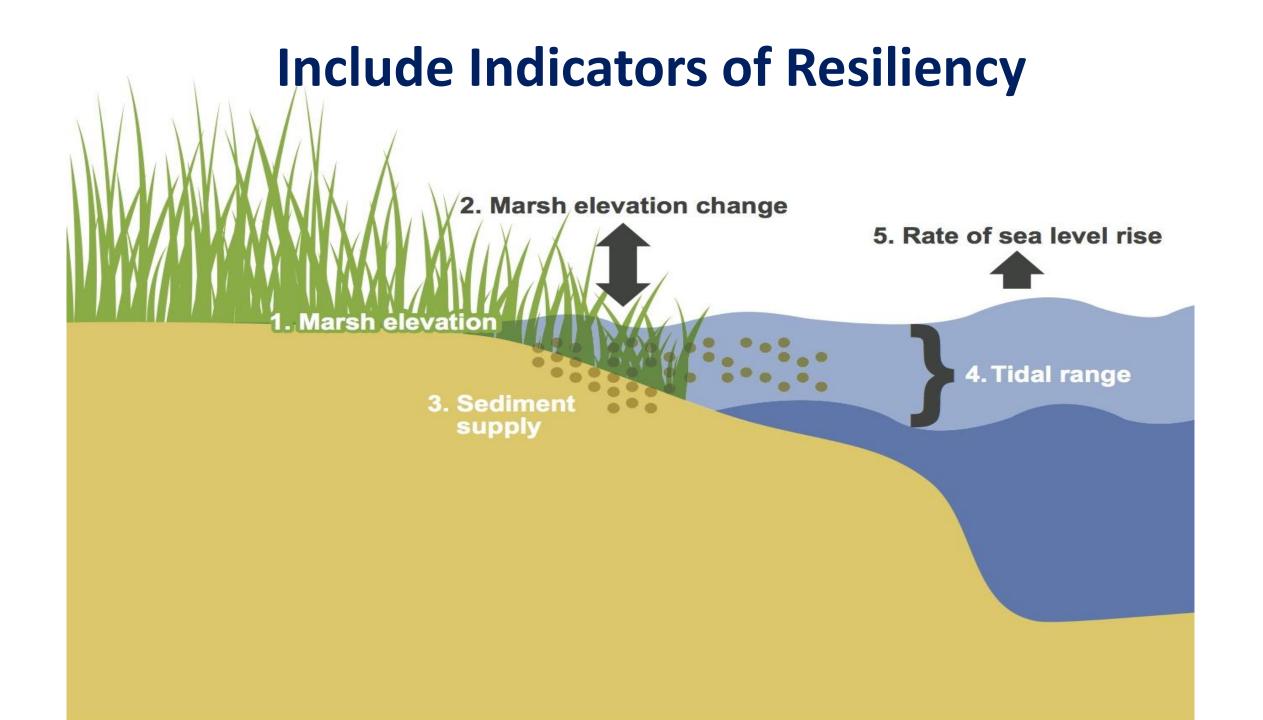
Long-term monitoring needs to be institutionalized through sustained regional monitoring programs

Monitoring should include measures of resiliency

Success Takes Time




Leverage Regional Monitoring Programs


- Estuarine Marine Protected Area Program
 ✓ Statewide
- San Francisco Bay
 - ✓ Wetlands Regional Monitoring Program
 - ✓ Interagency Ecological Program
- Southern California
 - ✓ Bight Regional Monitoring Program
 - ✓ Wetlands Recovery Project Monitoring Program
- USEPA National Estuary Program ★
 - ✓ San Francisco Bay, Morro Bay, Santa Monica Bay
- San Onofre Nuclear Generating Station Mitigation Program
 - ✓ San Dieguito, Tijuana, Mugu Lagoon, Carpinteria Salt Marsh

Account for Future Conditions

Category	Metric	Dataneeds
MARS metrics (Raposa et al	2016)	
Marsh elevation distributions	Percent of marsh below MHW	Frequency distribution of marsh elevations; estimate of mean high water
	Percent of marsh in lowest third of plant distribution	Frequency distribution of marsh elevations
	Skewness	Frequency distribution of marsh elevations
Marsh elevation change	Elevation change rate $(mm yr^{-1})$	Time series data from surface elevations tables (SETs)
Sediment/accretion	Short-term accretion rate (mm yr $^{-1}$)	Time-series data from marker horizons
	Long-term accretion rate (mm yr ⁻¹)	Soil cores for radiometric dating
	Turbidity(NTU)	Mean turbidity from water quality sondes
Tidal range	Tidal range (m)	Mean daily tidal range from water quality sondes
Sea-level rise	Long-term rate of SLR (mm yr $^{-1}$)	Long-term data from NWLON station
	Short-term inter-annual variability in water levels (mm)	Inter-annual variability data from NWLON station
Ganju <i>et al</i> (2017) metrics		
	Flood-ebb turbidity differential	Mean suspended sediment concentrations on flood and ebb tides
	UVVR	Relative area of vegetated marsh and unvegetated areas from aerial photographs
Observed change in vegetati	on	
	Decadal change in UVVR	UVVR (see above) assessed at 2 + points spanning ~10 years
	Percent of marsh plain with vegetation	Area of vegetated marsh divided by total marsh landscape area (vegetated+unvegetated) \times 100
	Decadal change in percent vegetated	Change in above, assessed at 2 $+$ points spanning ~10 year

Table 1. Summary of metrics and approaches used for each.

Wasson et al. 2019

None of it Matters if You Can't Access and Interpret the Data

Strive for an integrated, electronic data flow through all steps of the data management process from data collection through publication

Manage data in a geospatial format to enhance data visualization and interpretation and facilitate data integration across programs

Use an open data format that includes web services and application program interfaces (APIs) to facilitate data

Standard Data Assembly and Infrastructure to Increase Comparability and Encourage Collaboration

https://empa.sccwrp.org

Data Download

Please note: More datasets are being compiled for distribution. Check back soon.

Data

EMPA 2021 Algae Cover

This data was collected to quantitatively assess the distribution and relative cover ... Abundance This data was collected to quantitatively assess the distribution, relative...

EMPA 2021 Fish Abundance his data was collected to This data was collected to

This data was collected to quantitatively assess the distribution, species richness.

EMPA 2021 Sediment Grainsize

This data was collected to quantitatively assess sediment grainsize in different habitat...

Data Submission

Data Submission Checker

Check your data with the Data Submission Checker tool to insure that your filled-out template file matches out database structure.

View Checker Tool

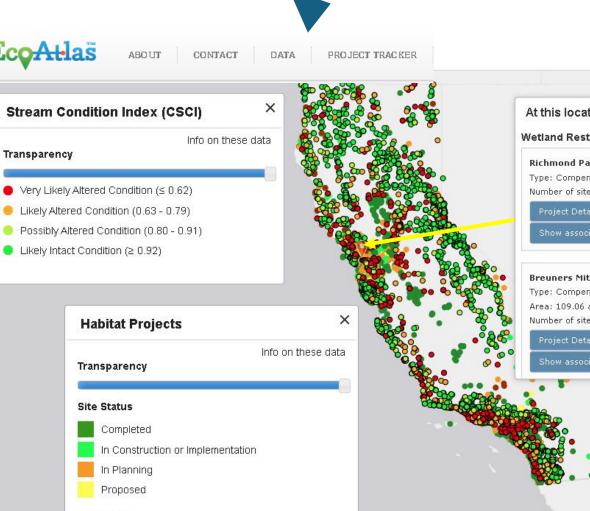
Lookup Lis

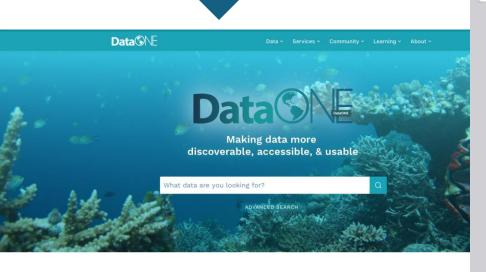
Estuary Marine Protected Area (EMPA)

Monitoring Project

Monitoring protocol and data

The main objective of the EMPA project is to develop an enhanced, coordinated Statewide Estuarine Monitoring Program called out in the California Marine Life Protection Act (MLPA) Monitoring Action Plan.


This project includes the compilation and analysis of select, currently available data sets, a focused field data collection effort to fill data gaps through implementation of standard protocols (abiotic, biotic, habitat, and stressor parameters), quantification of the current benefits of MPA status, and the development of long-term monitoring and management recommendations to expand the benefits of EMPA designation and document changes through time.


This website provides access to the technical reports generated from the project, monitoring protocols, field data sheets, and instructions for accessing and uploading data generated using the EMPA monitoring protocol.

Transparency

https://empa.sccwrp.org

	Info on the
Transparency	
Site Status	
Completed	
In Construc	tion or Implementation
In Planning	
Proposed	
Impact Site	
Impact Site	

etland Restoration Projects	
Richmond Parkway Type: Compensatory mitigation Number of sites in project: 1	
Project Details	
Show associated impact sites	
Breuners Mitigation Bank	
Type: Compensatory mitigation	
Area: 109.06 acres	
Area: 109.06 acres	
Type: Compensatory mitigation Area: 109.06 acres Number of sites in project: 1 Project Details	

Lessons Learned in California

Success is in the eye of the beholder

Collaboration is key to gauging success

• Build trust

• Find common ground

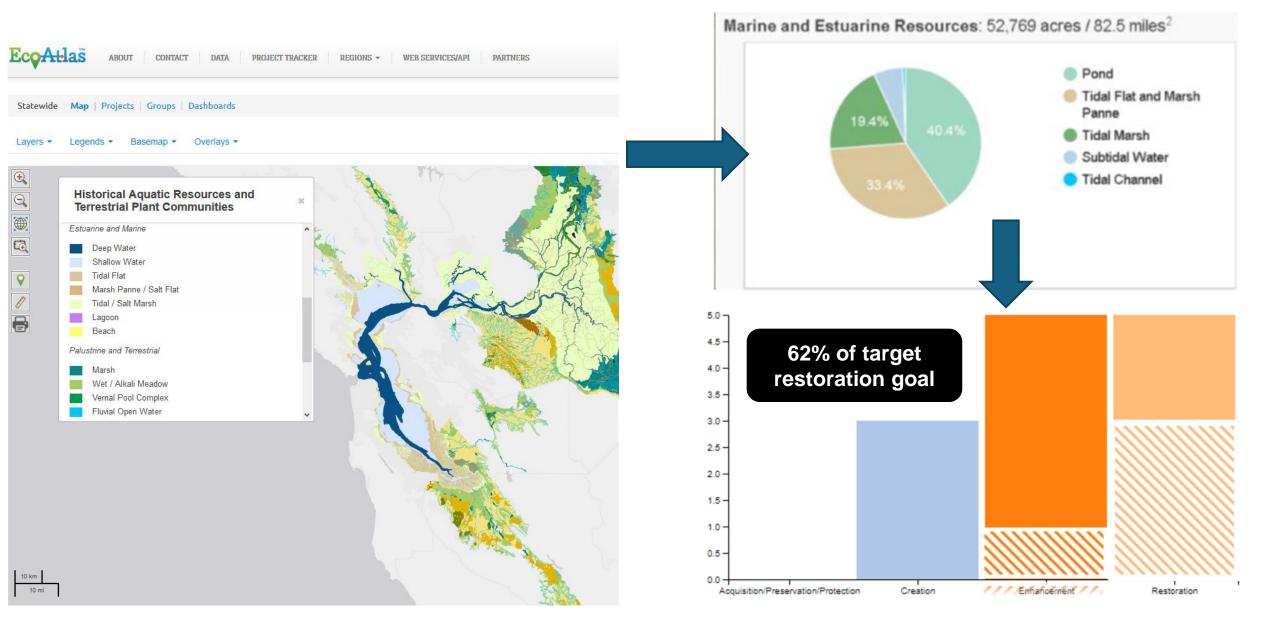
• Identify low-hanging fruit

• Generate early success

- Demonstrate value
- Tell your story

Evaluation of success requires context

Meaningful conclusions about success take time


None of it matters if you can access and interpret the data

Thank you!

Eric Stein erics@sccwrp.org www.sccwrp.org 714-755-3233

EXTRA SLIDES

Targets Based on Landscape Profiles

Keys to success

- Don't force it find common ground
- Everybody is busy and this is nobody's job

 ✓ Need a designated "point person"
 ✓ Empower key motivated individuals
 ✓ Encourage leaders to emerge
- *Remove all barriers to information flow*
 - ✓ Informed participants are engaged and supportive participants.....that includes the public

Keys to Success

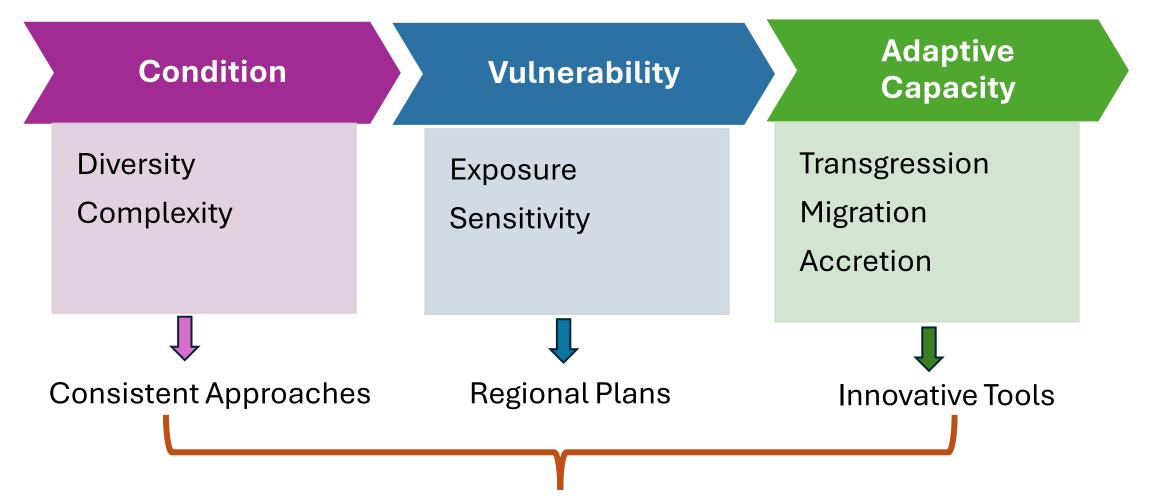
- Establish a clear and common vision & stick to it
 - Things that directly affect the problem are part of the solution -others things lead to other problems.
- Start modestly, learn as you go

- Obtain early successes and relish in them
- Stay engaged -- don't be complacent
- Think/plan regionally Act/implement locally

Protocols Can be Used to Develop Appropriate Performance Standards

- Measures a single aspect of condition or function
- Can be measured objectively in a repeatable manner
- Clear and unambiguous
 ✓ Somebody else will likely have to interpret what you meant
- Defensible
- Readily quantifiable targets with known levels of confidence
- Tied to established goals and objectives
- Can inform adaptive management actions and/or contingency actions

Example Performance Standard


- At the end of year 3, at least 80% of Area A shall have a benthic invertebrate index score within 10% of the median reference population score.
 - ✓ If this standard is not met, the site will be re-evaluated within 120 days of the original field assessment
 - ✓ If the standard is still not met, metric level analysis and/or causal assessment shall be conducted to identify likely reasons for failure

Indicator	Metric		Questions						
		Stressors	Condition	Resilience					
	Extent marsh								
llabitat	Extent seagrass bed								
Habitat	Habitat diversity								
	% buffer, transition zone								
WQ	Temp								
	DO								
	Salinity								
	Chlorophyll a								
	Turbidity								
	Extent, diversity, % invasive/native								
	Percent marsh below MHW								
Vegetation	UVVR – relative area of vegetated marsh and unvegetated (aerial photos)								
	Percent of marsh in lowest third of plant distributions								

Key Elements of Resiliency

Identify opportunities based on conservation needs and societal benefits

TECHNICAL ARTICLE

Adaptive management of large-scale ecosystem restoration: increasing certainty of habitat outcomes in the Columbia River Estuary, U.S.A.

Chanda Littles^{1,2}, Jason Karnezis³, Katie Blauvelt⁴, Anne Creason³, Heida Diefenderfer⁵, Gary Johnson⁶, Lynne Krasnow⁷, Phil Trask⁴

