Blue carbon challenges in a California coastal salt marsh

Elkhorn Slough National Estuarine Research Reserve

ESNERR Team Dave Feliz Susie Fork **Bill Fortner Monique Fountain** John Haskins **Rikke Jeppesen** Kari Olsen Mary Paul **Kerstin Wasson** Andrea Woolfolk

Collaborators

Beth Watson, Drexel University Cathleen Wigand, US EPA, Narragansett, RI Charlie Endris, Moss Landing Marine Labs Ivano Aiello, Moss Landing Marine Laboratories

Funders

California Department of Fish and Wildlife California Ocean Protection Council California State Coastal Conservancy California Wildlife Conservation Board USFW National Coastal Wetlands Conservation

Elkhorn Slough estuary – a gem in central California

High value system both ecologically and economically

Elkhorn Slough marshes have sequestered a lot of carbon

Restoration Ecology

RESEARCH ARTICLE

Applications from Paleoecology to Environmental Management and Restoration in a Dynamic Coastal Environment

Elizabeth B. Watson,^{1,2,3} Kerstin Wasson,² Gregory B. Pasternack,⁴ Andrea Woolfolk,² Eric Van Dyke,² Andrew B. Gray,⁴ Anna Pakenham,⁵ and Robert A. Wheatcroft⁵

50% of Slough marshes lost to diking

From Van Dyke & Wasson

Legacy of diking persists in system with low sediment supply and subsidence

Remaining marshes are drowning already now, and will not survive much sea-level rise

Option 1: Conserve existing tidal marshes

Option 2: Facilitate migration to higher ground

Option 3: Thin-layer sediment addition

Option 4: Thick soil addition

Hester marsh restoration

From Van Dyke & Wasson

Transforming a formerly diked, degraded site to a high, climate-ready marsh

You can build a high marsh for tomorrow in place of yesterday's degraded wetland

Edmund Lowe Photography

Intensive blue carbon monitoring: management history

Pre-restoration

Post-restoration

Degraded control

Reference

Intensive blue carbon monitoring: across habitat types

mudflat

salt marsh

grassland

Intensive blue carbon monitoring: multiple metrics

Above-ground C in plants, sediment

Below-ground in plants, sediment, production/decomposition

Gas flux

Colonization by vegetation takes time

Have patience and plan far ahead, when building tomorrow's marshes

Above-ground carbon storage will be lower at restoration site than reference site for a while

Mudflats can have high carbon sequestration rate due to high accretion rates on surface

Calculating net blue carbon function integrating multiple metrics over time

Recognize value of mudflats for blue carbon function

Reference marshes outperform restoration site: when possible, conserve rather than restore

Plan far ahead for tomorrow's blue carbon function

Trade-offs between blue carbon function now vs. future climate resilience of restoration site

Recap of key lessons learned

Diking led to extensive loss of marshes and decrease (but not total loss) of blue carbon function

You can build a high marsh for tomorrow in place of yesterday's degraded wetland

Blue carbon monitoring should include multiple metrics, habitat types, and management histories

Plan ahead and be patient, and take care of existing marshes, because it will be a long time until restored marshes achieve their blue carbon function

