Blue carbon monitoring in Pacific coast tidal wetlands

Christopher Janousek

PMEP, March 2025

PNW Blue Carbon Working Group

Outline

- Additional background for west coast blue carbon
- Introduction to Northeast Pacific Blue Carbon Database
 - Regional data synthesis
 - How to access the data
- Monitoring for blue carbon functions
 - Stocks
 - Sequestration rates
 - GHG emissions
- Final comments on good monitoring practices

Background

Stocks (long-term storage)

Bridgham et al. 2013, Neubauer & Megonigal 2015, Foster & Fulweiler 2016

Δ —

Lateral

export

- Blue carbon pools include:
 - Above-ground plant biomass
 - Below-ground plant biomass
 - Dead plant matter (wood)
 - Soils

PNW ecosystem	Belowground %
Seagrass	99.6%
Low marsh	98.7%
High marsh	98.5%
Tidal swamp	79.3%

	The second second	And the second design of the second s		
the second se		- Canton and	A Dear Parts	1 DAY
	States and a state			
KF FL	SG	EM	SS	F

6 –

Ecosystem	Kelp forests	Tideflats	Seagrass	Tidal marsh	Scrub-shrub tidal swamps	Forested tidal swamps
Vegetation	Giant kelp; bull kelp		Emergent	Emergent	Shrubs	Trees
Elevation	Subtidal to low intertidal	Subtidal to low intertidal	Subtidal to low intertidal	Usu. upper ½ intertidal	Upper ¼ intertidal	Upper ¼ intertidal
Salinity	Saline	Fresh to euhaline	Brackish to euhaline	Fresh to euhaline	Fresh to brackish	Fresh to brackish
Distribution	Outer coast, Salish Sea	Throughout estuaries	Outer coast, estuaries	Throughout estuaries	Rare, CA Delta & PNW estuaries	Rare, PNW estuaries

West coast blue carbon database

Northeast Pacific blue carbon database

- Initiated with a NERRS Science Collaborative grant to PNW Blue Carbon Working Group in 2016
- Goal: compile all regional blue carbon data available
- Started in the PNW then expanded to all of western North America
- C stocks, C sequestration, GHG emissions
- Linked series of flat files

Database structure

Data sets						
	Sample n	netadata				
		Core prof	fi <u>les</u>			
			Accretion	& C seque	stration	
				GHG flux	kes	

- Environmental data include
 - Wetland elevation
 - Salinity
 - pH
 - Sediment grain size
 - Vegetation communities
 - Soil nitrogen
 - Soil temperature
 - Groundwater level

						Corel	subsampl	e dimen	sions	Bulk									Carbon									Soil C str	cke (k	a / ra 2)			Sedin	nent ara	in cize		
	· · ·			Stat	Lv I 2	Tot C	Samp	Extrapo	Extra	DOIN	•				•	•	•	•	Carbon	Calc CD	Cak CD	×	Sfc CD	Cak sfe	Rhiz	Rhiz	Calc	3011 0 50	alc	Calc	Calc	Calc	Seam	CHC KIG	111 5120		
	Stud		Wetl	e/pr	Ecore	depth	depth	de pth	pol	BD	BD (g/		OM	CN	%0 M,	%С,	%N,	Calc	Re p CD	by CN	by LO I	Sfc CD	dpth	CD (0-	CD	CD	rhiz CD	5	tk &	stk,	stk,	stk,	%	%			%
Sa mpiD	y ID	StudySa mpID	type	01	8	(cm)	inte rval	interval	samp	type	cm3)	C method	type	type	LOI	CHN	CHN	C:N	(g/cm3)	(g/cm3	(g/cm 3	meth	range	10)	meth	dpth	(20-30)	Rep stk a	ne tho	0.3m	0.5m	1m	gravel	sand	% silt	% clay	fines
0	x	0	EM	CA	11	137														1	EM	CH N	0-10	0.058	CH N	20-30	0.052	45.1 (HN	8.76	32.96	44.21	NA	NA	NA	NA	NA
0.2							0-10	0-15	15	м	0.8	CHNSIOL	м	м	130	73	0.7	10.4	NA	0.058	0.041	EO/SS		0.042	MG			5	76				0	13	65	22	870
05							20.20	15.90	15	M	0.0	CHNRIOL	64 64	64	120	6.5	0.7	99	NA	0.050	0.072	EL/SC		Matuet	DA. 7								NA	NA	NA	NA	NA.
00							20-30	20-30	5	m	0.0	CHINELOI	m M	- M1	10.0		0.0	0.1	N/A	0.002	0.020	FL/30	DEDAL	NOLYEL	PAC)			í.	.00				N/A	N/A	N/A	NA NA	NA
00							30-40	30-50	00	Mi	0.8	CHINGLOI	MI NI	N1	15.0	4.1	0.5	0.2	NA	0.055	0.056	EIVI-/	PINY						0.40				NA	NA	NA	NA	NA
100		00.0 101 111	C.4.	20	7.4	~~~	75-80	50-100	37	M	0.8	CHN&LOI	M	M	13.0	3.8	0.4	9.5	NA	0.030	0.041	EM-11	CA	10.075	011 M	- 1 4 00	0.007	1	1.25	2.25	12.00	26.40	NA	NA	NA	NA	NA
126	1	COO-MILE-HIME	EIVI	OR	7.1	300	- h h E 10	0.45	45		0.007	011 M	A1.0		51 0	6.00	0.47	40.0	0.025	0.035	NA	CHIN	abt 5-1	10.02	CHIN	abt 20-	0.027	NA C	74	1.12	12.90	20.18	NA	NA	NA	NA	NA
1268			EIVI	OR OD	7.1		abt 5-10	15.00	15	M	0.397	CHN	NA	NI NI	NA	6.29	0.47	13.3	0.025	0.025	NA							3	./4				NA	NA	NA	NA	NA
1260			ENI	OR	7.1		abt 20-25	20.50	20	M	0.583	CHN	NA	N1	NA NA	0.92	0.56	12.4	0.027	0.027	NA							3	.98 90				NA	NA	NA NA	NA	NA NA
1260			EM	OR OR	7.1		abt 30-43	50-100	20	M	0.552	CHN	NA	N1 54	NIA.	9.69	0.30	13.0	0.020	0.020	NDA.								8.20				NA	N.A.	N/A	NA	NIA NIA
126u 126e			EM	OR	7.1		>100	100-300	200	M	0.725	CHN	NA	M	NA	2.56	0.35	19.2	0.027	0.027	NA								0.29				NΔ	NA	NA	NA	NA
127	1	SKA-WIL-HM1	FM	WA	7.1	273	- 200	200 200	200		0.700	CITA	110		100	2.50	0.25	10.2	0.0 20	0.020	NA	CH N	abt 5-1	10.025	CH N	abt 20-	0.105	NA (HN	19 70	24.54	35.02	NA	NA	NA	NA	NA
127a		0104 1012 11113	FM	WA	71	270	abt 5-10	0-15	15	м	0.519	CHN	NA	м	NA	4 90	0.27	18.0	0.025	0.025	NA	CITI	0000		CITI	00120	0.200	1005	81	13.70	24.24	00.02	NA	NA	NA	NA	NA
127b			EM	WA	7.1		abt 20-25	15-30	15	M	2.101	CHN	NA	M	NA	5.04	0.30	16.6	0.105	0.106	NA							1	5.89				NA	NA	NA	NA	NA
127c			EM	WA	7.1		abt 38-43	30-50	20	M	0.431	CHN	NA	M	NA	5.61	0.29	19.2	0.024	0.024	NA							4	.83				NA	NA	NA	NA	NA
127d			EM	WA	7.1		abt 73-78	50-100	50	M	0.694	CHN	NA	M	NA	3.02	0.17	18.1	0.021	0.021	NA							1	0.48				NA	NA	NA	NA	NA
127e			EM	WA	7.1		>100	100-273	173	M	1.086	CHN	NA	M	NA	1.45	0.10	13.9	0.016	0.016	NA							2	7.22				NA	NA	NA	NA	NA
128	1	SKA-WIL-HM2	EM	WA	7.1	300															NA	CH N	abt 5-1	10.023	CH N	abt 20-	0.025	NA (ΗN	7.31	12.78	23.13	NA	NA	NA	NA	NA
128a			EM	WA	7.1		abt 5-10	0-15	15	M	0.494	CHN	NA	M	NA	4.75	0.27	17.4	0.023	0.023	NA							3	.52				NA	NA	NA	NA	NA
128b			EM	WA	7.1		abt 20-25	15-30	15	M	0.574	CHN	NA	M	NA	4.41	0.27	16.1	0.025	0.025	NA							3	.79				NA	NA	NA	NA	NA
128c			EM	WA	7.1		abt 38-43	30-50	20	M	0.487	CHN	NA	M	NA	5.61	0.28	20.2	0.027	0.027	NA							5	.46				NA	NA	NA	NA	NA
128d			EM	WA	7.1		abt 73-78	50-100	50	M	0.727	CHN	NA	M	NA	2.85	0.16	17.4	0.021	0.021	NA							1	0.35				NA	NA	NA	NA	NA
128e			EM	WA	7.1		>100	100-300	200	M	0.911	CHN	NA	M	NA	2.09	0.14	15.0	0.019	0.019	NA							3	8.15				NA	NA	NA	NA	NA
129	1	SKA-WIL-HMS	EM	WA	7.1	282															NA	CH N	abt 5-1	10.023	CH N	abt 20-	0.018	NA (HN	6.12	9 .37	20.78	NA	NA	NA	NA	NA
129a			EM	WA	7.1		abt 5-10	0-15	15	M	0.279	CHN	NA	м	NA	8.32	0.35	22.9	0.023	0.023	NA							3	.48				NA	NA	NA	NA	NA
129b			EM	WA	7.1		abt 20-25	15-30	15	м	0.210	CHN	NA	M	NA	8.39	0.44	19.1	0.018	0.018	NA							2	.64				NA	NA	NA	NA	NA
129c			EM	WA	7.1		abt 38-43	30-50	20	M	0.353	CHN	NA	M	NA	4.60	0.27	17.1	0.016	0.016	NA							3	.25				NA	NA	NA	NA	NA
129d			EM	WA	7.1		abt 73-78	50-100	50	M	0.736	CHN	NA	M	NA	3.10	0.17	18.3	0.023	0.023	NA							1	1.40				NA	NA	NA	NA	NA
129e			EM	WA	7.1		>100	100-282	182	M	0.644	CHN	NA	м	NA	2.60	0.14	18.0	0.017	0.017	NA							3	0.45				NA	NA	NA	NA	NA
130	1	SKA-WIL-HM4	EM	WA	7.1	276															NA	CH N	abt 5-1	1(0.022	CHN	abt 20-	0.022	NA (HN	6.48	10.85	23.40	NA	NA	NA	NA	NA
130a			EM	WA	7.1		abt 5-10	0-15	15	M	0.469	CHN	NA	M	NA	4.61	0.30	15.6	0.0 22	0.022	NA							3	.24				NA	NA	NA	NA	NA
1305			EM	WA	7.1		abt 20-25	15-30	15	M	0.477	CHN	NA	M	NA	4.52	0.30	14.9	0.0 22	0.022	NA							3	.24				NA	NA	NA	NA	NA
130c			EM	WA	7.1		abt 38-43	30-50	20	M	0.269	CHN	NA	M	NA	8.12	0.46	17.7	0.022	0.022	NA							4	.37				NA	NA	NA	NA	NA
1300			EM	WA	7.1		abt 73-78	50-100	50	M	0.541	CHN	NA	M	NA	4.64	0.26	18.1	0.025	0.025	NA								2.55				NA	NA	NA	NA	NA
130e			EM	WA	7.1		>100	100-276	175	M	0.927	CHN	NA	M	NA	2.01	0.14	14.8	0.019	0.019	NA							2	2.73				NA	NA	NA	NA	NA

- Core-level data: Approaching 1800 soil cores
- Subsample-level data: >30,000 lines of data

Stocks synthesis goals

Hudson Bahia de Hu Baie d' Hu 5.0 90 Gulf o Gelfo d Golfe di

- With a growing dataset, opportunity to conduct a regional synthesis of soil carbon stocks
- Goal 1: Compare stocks between different Pacific coast blue carbon ecosystem types
- Goal 2: Assess the relative influence of different ecosystem drivers

Stocks methods

- 69 datasets for least-disturbed wetlands
- 1284 cores/soil pits
- >6500 km coastline; 86 estuaries/ coastal regions
- Used a standard approach to determine carbon density from bulk density, %C_{org} and %OM data
- Integrated C density over depth to determine carbon stocks to 30, 50 and 100 cm depths (Mg/ha)

Janousek et al., GBC, In Press

Drivers of western N American blue carbon stocks

- What are the drivers of stocks? (This could help us estimate carbon where data are missing)
- Multivariate machine-learning model, boosted regression trees
- Analysis: Scott Bridgham

Janousek et al., GBC, In Press

Local drivers (elevation)

Janousek et al., GBC, In Press

Janousek et al., GBC, In Press

Data needs

- More CH₄ emissions data from fresh and oligohaline tidal wetlands (0-5 ppt). High CH₄ reduces the climate cooling potential of wetlands.
- More data on blue carbon in restored and disturbed tidal wetlands are needed to quantify the positive climate impacts of wetland restoration.
- For accounting, it is also important to understand lateral fluxes of carbon.
- Non-traditional & undersampled blue carbon ecosystems: scrub-shrub wetlands, kelp forests & algal beds, sandy beaches

Kandoll Farm restored marsh, Columbia

- For summary stocks data in west coast estuaries, see appendices in Janousek et al. (In Press). *Global Biogeochemical Cycles* or Janousek et al. (2025a) data release
- For methane flux data for the PNW, see Williams et al. (In Press). *Ecological Applications* or Janousek et al. (2025b) data release
- Many west coast datasets are also compiled in the Smithsonian's Coastal Carbon Atlas

Monitoring blue carbon

Considerations

- What are your project & monitoring goals? (conservation, restoration, etc.)
- What are your data needs?
- Budget?

Considerations

- What ecosystem(s) are in your project area?
- Does your project involve wetland conversion (e.g., pastureland restored to tidal marsh)?
- How deep in the sediment column are your project's likely impacts?

Example: Emergent marsh, Coos Estuary

Soil carbon (Mg/ha) (to 1 m)	
270 ± 72 (n=39)	TIER 3: Local (Coos)
223 ± 85 (n=180)	TIER 2: Regional (PNW)
231 (global median)	TIER 1: Global synthesis

Monitoring: carbon stocks

How to:

- Collect soil cores to at least 50 cm depth
- Section cores vertically into subsamples
- Analyze sub-samples for bulk density (BD) and carbon content or organic matter content (OM)
- Multiply carbon density by subsample length and sum subsamples to estimate carbon stocks

Considerations

- What ecosystem(s) are in your project area?
- Does your project involve wetland conversion (e.g., pastureland restored to tidal marsh)?
- How may changing hydrology impact C sequestration (e.g., restoration or SLR)?

Factors likely to affect C sequestration

- Sediment supply in the watershed
- Hydrologic connectivity including sheet flow (levees, small culverts)
- Wetland elevation
- Above-ground plant biomass

How to:

- Collect and section cores as for stocks analysis
- Analyze sub-samples with radiometric dating (²¹⁰Pb, ¹³⁷Cs)
- Apply an age-depth model to determine sediment accretion rate
- Multiply your accretion rate by carbon density to estimate CAR

Caveats:

 Radioisotope dating won't work in disturbed sediments (e.g., young restored sites)

Considerations

- Is your study site likely to have high methane emissions?
- Is there land conversion that could result in a change in GHG emissions?

Factors likely to affect CH₄ emissions

- Fresh or oligohaline salinities
- High groundwater levels
- Warmer temperatures
- Low wetland elevation

How to:

• Evaluate what method(s) is appropriate for your work

Method	Pros	Cons
Use regional or global values for your ecosystem(s)	Rapid and lowest cost	Data are not site- specific and may be inaccurate for your wetland
Field-based chambers/ portable gas analyzer	Good for small sites; portable and rapid	Time consuming; \$\$; difficult to obtain adequate spatial and temporal replication
Field-based eddy co- variance flux tower	Continuous data over a relatively large footprint. Good for large sites	\$\$\$\$\$\$\$\$\$\$\$\$ \$\$\$\$\$\$\$\$ \$\$\$\$\$\$ >1 site difficult
Monitor environmental drivers and apply a statistical model	Fairly low cost; also gain other valuable monitoring data	Statistical and logger expertise needed

• John's River tidal swamp, Grays Harbor Estuary, WA

Data inputs

Annual CH₄ emissions estimate

- Restored in 2016
- 179 ha of tidal wetland

- Carbon accumulation rates
- GHG emissions, ~1 and ~8 yr after restoration

How does this help fill data gaps?

 More insight into blue carbon functions early in the restoration process

- Blue carbon monitoring should be accompanied by adequate ecosystem drivers monitoring (elevation, salinity, groundwater, etc.)
- Monitoring associated with restoration should:
 - Use a BACI or BACIPS design
 - Before-after measurements at the restored site
 - Before-after measurements in 1+ reference site(s)
- Suggest monitoring not just for the sake of your project, but to help fill data gaps

Christopher Janousek and Trevor Williams Department of Fisheries, Wildlife and Conservation Sciences, Oregon State University

Thank you!

- Trevor Williams, Maggie McKeon, Matt Norwood, Craig Cornu, others for figures and field sampling
- Many data contributors and Brandon Drucker for early work on the database
- Funders: **NCCOS** NATIONAL CENTERS FOR COASTAL OCEAN SCIENCE

Pew

National Estuarine Research Reserve System Science Collaborative

Christopher.Janousek@oregonstate.edu Social media: @JanousekWild, @pnwbluecarbon

Marsh and tidal swamp, Grays Harbor Estuary

Notes

Presentation prepared for PMEP Blue Carbon workshop, 4 March 2025

REFERENCES:

Bridgham et al. 2013. Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales. Global Change Biology 19:1325-1346.

Brophy L. 2019. Comparing historical losses of forested, scrub-shrub, and emergent tidal wetlands on the Oregon coast, USA: A paradigm shift for estuary restoration and conservation. Repared for the Pacific States Marine Fisheries Commission and the Pacific Marine and Estuarine Fish Habitat Partnership. Institute for Applied Ecology, Corvallis, OR.

Foster SQ, Fulweiler RW. 2016. Sediment nitrous oxide fluxes are dominated by uptake in a temperate estuary. Frontiers in Marine Science 3:40.

Janousek C et al. In press. Blue carbon stocks along the Pacific coast of North America are mainly driven by local rather than regional factors. Global Biogeochemical Cycles.

Janousek C, Krause J, et al. 2025a. Dataset: Carbon stocks and environmental driver data for blue carbon ecosystems along the Pacific coast of North America. Figshare data release.

Janousek C, Williams T, McKeon M et al. 2025b. Dataset: Fluxes of carbon dioxide, methane, and nitrous oxide and associated environmental data from estuarine wetlands in the Pacific Northwest, USA. Figshare data release

Kauffman B et al. 2020. Total ecosystem carbon stocks at the marine-terrestrial interface: Blue carbon of the Pacific Northwest coast, United States. Global Change Biology 26:5679-5692.

Krause-Jensen D, Duarte CM. 2016. Substantial role of macroalgae in marine carbon sequestration. Nature Geoscience 9:737-743.

Maxwell TL et al. 2023. Global dataset of soil organic carbon in tidal marshes. Scientific Data.

Neubauer SC, Megonigal JP. 2015. Moving beyond global warming potentials to quantify the climatic role of ecosystems. Ecosystems 18:1000-1013.

Williams T, Janousek CN, McKeon et al. In press. Methane and nitrous oxide fluxes from reference, restored, and disturbed estuarine wetlands in the Pacific Northwest, USA. Ecological Applications.

NOTES:

© 2025 Christopher Janousek except for logos or content from others as labeled. Compiled from presentations to PNWBCWG in April 2023 and WA NWL workshop in Oct 2024 and other sources; current: 17 Oct 2024 Photos by CNJ @ OSU unless otherwise noted. CEC map from the Commission for Environmental Cooperation. Mangrove image is in the public domain

