EcoAlas ecoatlas.org

EcoAtlas

Tools for Restoration Practitioners

Cristina Grosso, Environmental Informatics Managing Director

PMEP Effective Estuary Restoration Workshop

May 6, 2025

What is EcoAtlas?

A scientifically produced toolset to visualize the abundance, diversity and condition of aquatic resources within a landscape

ecoatlas.org

What is EcoAtlas?

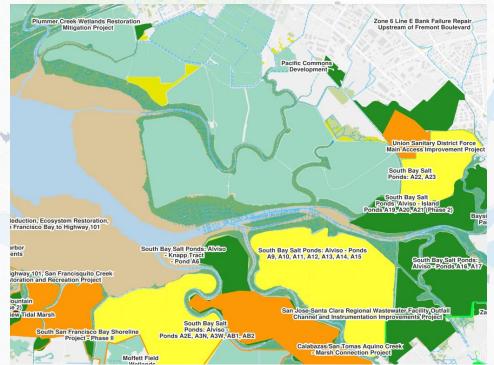
Provides dynamic summary tools that support wetland project planning, monitoring, and tracking throughout California

Aggregates different kinds of environmental data from multiple sources in one place and allows for comparability across a landscape/region

Provides adaptable and customized reporting tools

Wetland and Riparian Area Monitoring Program

Data management framework and standardized methods for **monitoring, assessing, and adaptively managing** aquatic resources within a watershed or landscape context


What are the WRAMP goals?

- Public access to standardized environmental data and visualization/summary/download tools
- Develop standardized monitoring protocols and data management procedures to support sound science
- Support stream and wetland resource management and restoration at the watershed or landscape scale

What is Level 1?

Map-based inventories of aquatic resources

- Where are the streams and wetlands? What types of streams and wetlands? How many miles or acres are there?
- Where are the habitat projects?
 What ecological enhancement actions have they completed?
 How have they affected adjacent wetlands?

California Aquatic Resources Inventory (CARI) + Project Tracker

What is Level 2?

Rapid, field-based visual assessments of overall condition

- How healthy are the streams and wetlands?
- How does my project compare to the ambient condition in the watershed?
- What aspects of my project's overall condition need improvement?

California Rapid Assessment Method (CRAM) + RipRAM

What is Level 3?

- Site-specific detailed measurements (*field, lab*)
 - What species are supported?
 - What contaminants are present?

Fish Surveys

How do these levels work together?

Level 1 maps tell us:

RAPID

- watershed context of wetland resources
- nearby restoration/mitigation projects and impact sites
- where to conduct Level 2 and 3 data collection

Level 2 condition assessments can:

- quickly provide information on overall ecological condition
- help to inform decisions or prioritize data collection

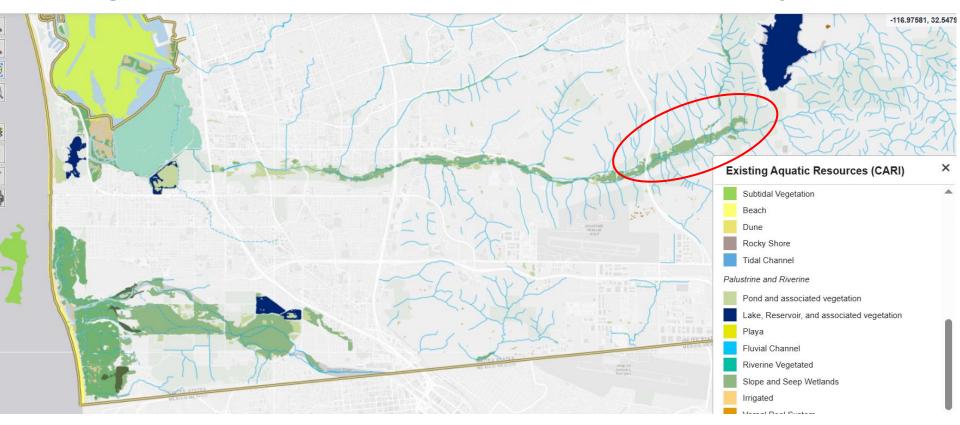
Level 3 data provides:

- detailed information to help explain Level 2 findings
- regulatory monitoring and project success criteria

Tools for every stage of the project lifecycle

EcoAtlas tools can be applied to projects throughout the project lifecycle:

- Planning
- Implementation
- Monitoring (methods, data collection)
- Tracking project performance
- Reporting

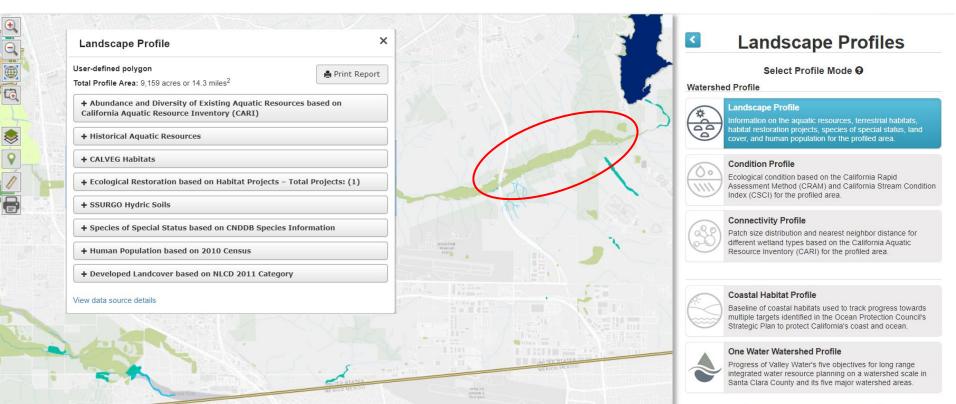

Example: Otay River Mitigation Project

Impact: new housing development

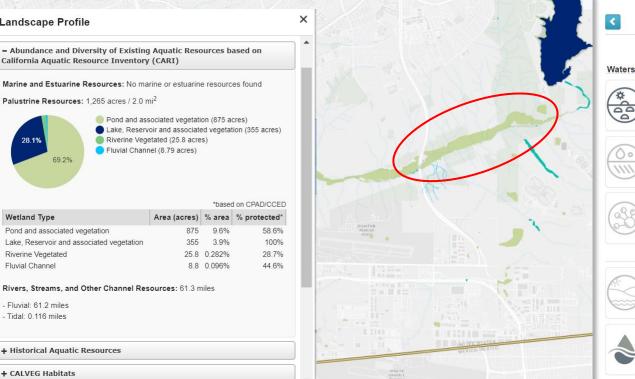
Mitigation: improvement of river

View existing aquatic resources Using California Aquatic Resource Inventory

View historical aquatic resources



Ind X Existing Aquatic Resources (CARI) X Subtidal Vegetation Subtidal Vegetation Beach Dune Ind Rocky Shore Tidal Channel Palustrine and Riverine Ind Pond and associated vegetation Lake, Reservoir, and associated vegetation Ind Playa Fluvial Channel Ind Riverine Vegetated Indexected


ANDSCAP

Quantify resources *Generate a Landscape Profile*

Quantify resources Abundance and diversity of resources

Landscape Profiles

ANDSCAP

Select Profile Mode @

Watershed Profile

andscape Profile 20

Information on the aquatic resources, terrestrial habitats, habitat restoration projects, species of special status, land cover, and human population for the profiled area.

Condition Profile

Ecological condition based on the California Rapid Assessment Method (CRAM) and California Stream Condition Index (CSCI) for the profiled area.

Connectivity Profile

Patch size distribution and nearest neighbor distance for different wetland types based on the California Aquatic Resource Inventory (CARI) for the profiled area.

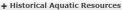
Coastal Habitat Profile

Baseline of coastal habitats used to track progress towards multiple targets identified in the Ocean Protection Council's Strategic Plan to protect California's coast and ocean.

One Water Watershed Profile

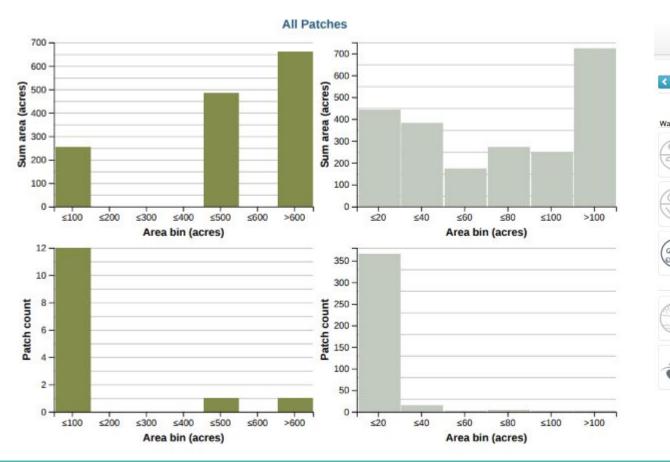
Progress of Valley Water's five objectives for long range integrated water resource planning on a watershed scale in Santa Clara County and its five major watershed areas

Continue to Define Region


0

28 1%

*based on CPAD/CCED					
Area (acres)	% area	% protected*			
875	9.6%	58.6%			
355	3.9%	100%			
25.8	0.282%	28.7%			
8.8	0.096%	44.6%			
	875 355 25.8	Area (acres) % area 875 9.6%			


Rivers. Streams, and Other Channel Resources: 61.3 miles

- Fluvial: 61.2 miles
- Tidal: 0 116 miles

+ CALVEG Habitats

Quantify habitat patch connectivity

Landscape Profiles

Select Profile Mode O

Watershed Profile

Information on the aquatic resources, terrestrial habitats, habitat restoration projects, species of special status, land cover, and human population for the profiled area.

Condition Profile

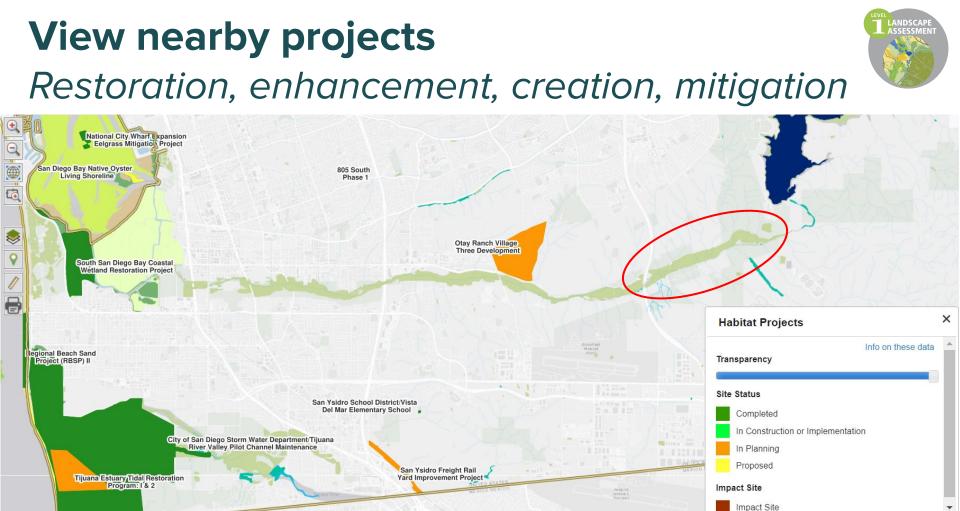
Ecological condition based on the California Rapid Assessment Method (CRAM) and California Stream Condition Index (CSCI) for the profiled area.

Connectivity Profile

Patch size distribution and nearest neighbor distance for different welland types based on the California Aquatic Resource Inventory (CARI) for the profiled area.

Coastal Habitat Profile

Baseline of coastal habitats used to track progress towards multiple targets identified in the Ocean Protection Council's Strategic Plan to protect California's coast and ocean.


One Water Watershed Profile Progress of Valley Water's five obl

Progress of Valley Water's five objectives for long range integrated water resource planning on a watershed scale in Santa Clara County and its five major watershed areas.

Continue to Define Region

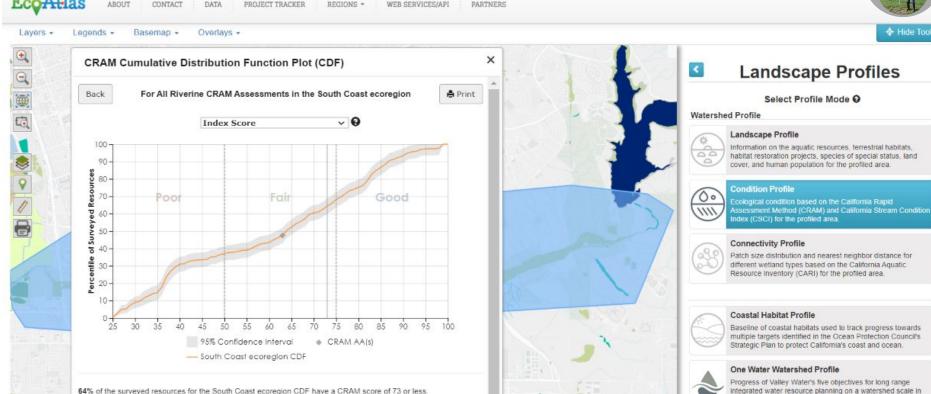
Icons provided by FlatArt from thenounproject.com and Santa Clara Valley Water

Determine condition using CRAM

Conduct CRAM field assessments to determine **overall** ecological condition

AA Name: Guadalupe Creek at Meridian Date: 6/30/23 Attribute 1: Buffer and Landscape Context (pp. 11-19) Comments Alpha. Numeria Stream Corridor Continuity (D) A 12 On upstream, 60m downstream Buffer: Alpha. Numeric Buffer submetric A: 100% with buffer Percent of AA with Buffer 12 A 104m average Buffer submetric B: 6 С Average Buffer Width Buffer submetric C: Dominated by non-natives, compaction of С 6 lever, road road edge, recreation on trail Buffer Condition Final Attribute Score = Raw Attribute Score = D+[C x (A x B)^{1/2}]^{1/2} 19,13 (Raw Score/24) x 100 Attribute 2: Hydrology (pp. 20-26) Alpha. 220% urbanized watershed C 6 Water Source А Envilibrium Channel Stability 12 D 3 1,43 ratio Hydrologic Connectivity Final Attribute Score = Raw Attribute Score = sum of numeric scores 21 (Raw Score/36) x 100 Attribute 3: Physical Structure (pp. 27-33) Numeric Alpha. 10 patches ß 9 Structural Patch Richness 2 benches with micro Δ 12 Topographic Complexity Final Attribute Score = 21 Raw Attribute Score = sum of numeric scores (Raw Score/24) x 100 Attribute 4: Biotic Structure (pp. 34-41) Plant Community Composition (based on sub-metrics A-C) Numeri 4 lavers Plant Community submetric A: 12 Number of blant layers 12 co-doms Plant Community submetric B: Α 12 Number of Co-dominant species 8% invasive Plant Community submetric C: 12 Δ Percent Invasion Plant Community Composition Metric 12 (numeric average of submetrics A-C) A high C С. 6 Horizontal Interspersion 9 150% W/ 2 lavers Vertical Biotic Structure Final Attribute Score = Raw Attribute Score = sum of numeric scores 27 (Raw Score/36) x 100 Overall AA Score (average of four final Attribute Scores) 75

Scoring Sheet: Riverine Wetlands



Identify improvements at site/landscape scale Using details from CRAM condition score

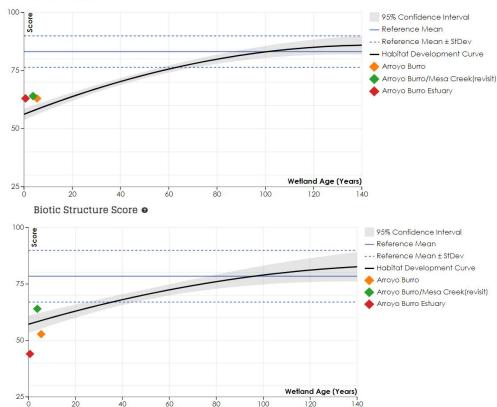
nego Bay-Chula Vista	At this location		×			1724610
	► Buffer And Landscape Context	93	•			
Son Diego Bay-west	▶ Hydrology	92		A THAT		
(50)	▼Physical Structure	38		Refe	erence Site - Pool 17	
	- Structural patch richness	D (3)	1. Contraction	(65)		e Site - Pool 15
	- Topographic complexity	C (6)			(73)	
San Diego Bay-Salt Pond Area (7	▼Biotic Structure	28		estoration-2013 Pre-Restoration		
(69)	- Number of plant layers present	C (6)	(63)	TOTAL	Su Oal	
	- Number of co-dominant species	D (3)		Mitigation Site - Pool 7 (70)	1 Martin	in allow
nta Slough	- Percent invasion	D (3)		BownFell Marcol		
Tijuana River Estuary AA# 2	- Plant community score	4		Apple .		
	- Horizontal interspersion and zonation	D (3)			CRAM	
juana River Estuary AA#3	- Vertical biotic structure	D (3)	-		CRAM	
na South Tiluana River Restoration Phase 2 -	A REAL PROPERTY AND A REAL PROPERTY AND				Transparency	Info on these d
(52)		1 - 2016				
(52) Tijuana River Estuary-main channel (69)	Tijuana River Restoration Phase (55)		911M24916 (54)		CRAM Assessment Sites	
68) Ina South Tijuana River Restoration Phase 2 -	2017	1/22				

Plot project CRAM score on ecoregional CDF ASSESSMENT Compare project to ambient condition

There are 1 total All Riverine CRAM AA(s) in the selected evaluation area.

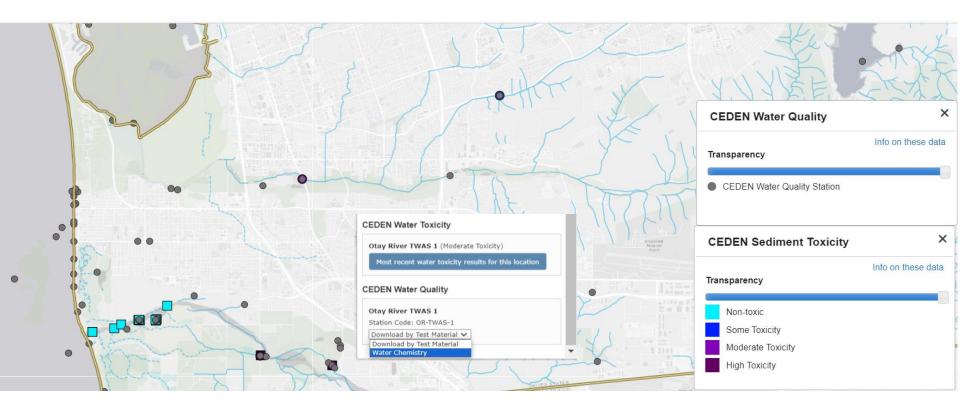
100% of these AA(s) (n=1) in your selected evaluation area have a CRAM score of 73 or less and 0 have a score of exactly 73

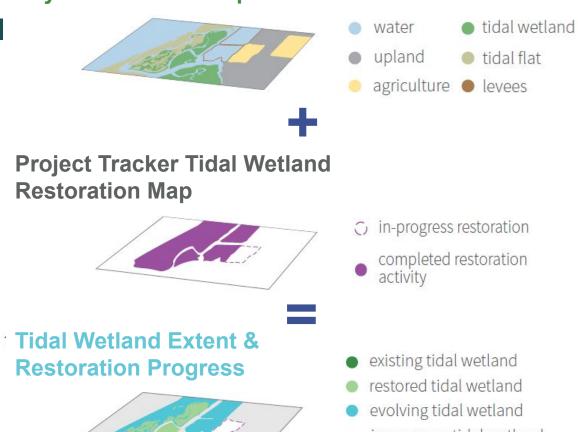
Continue to Define Region


Santa Clara County and its five major watershed areas.

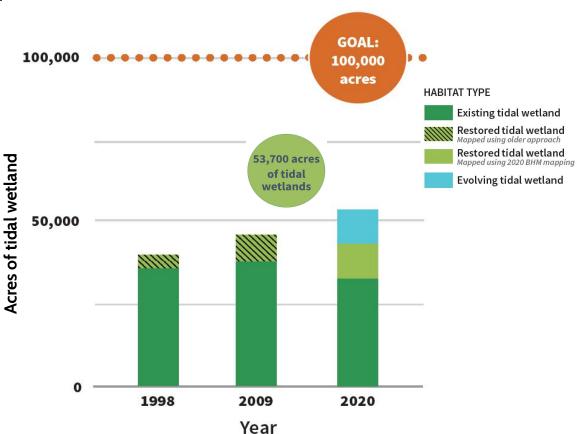
Hide Tools

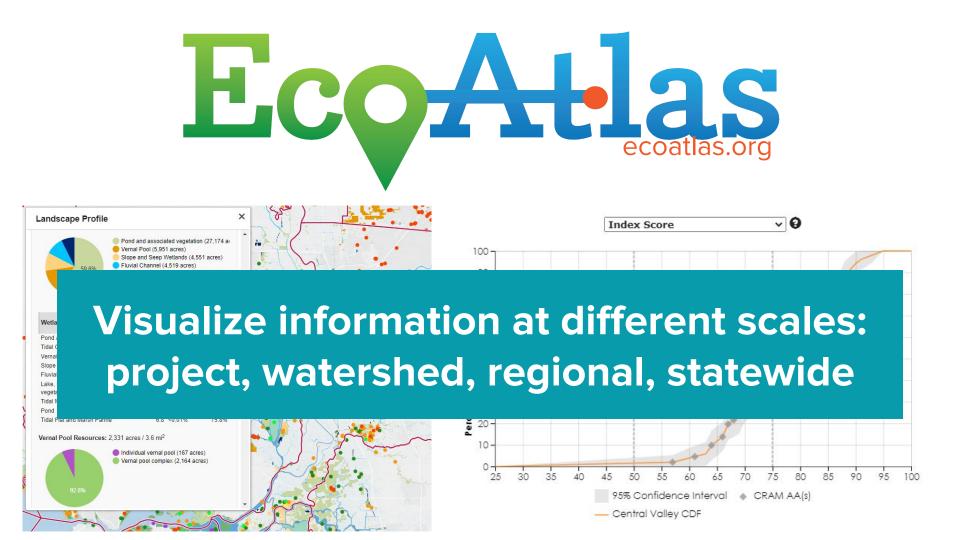
Track project performance Using CRAM/Habitat Development Curves

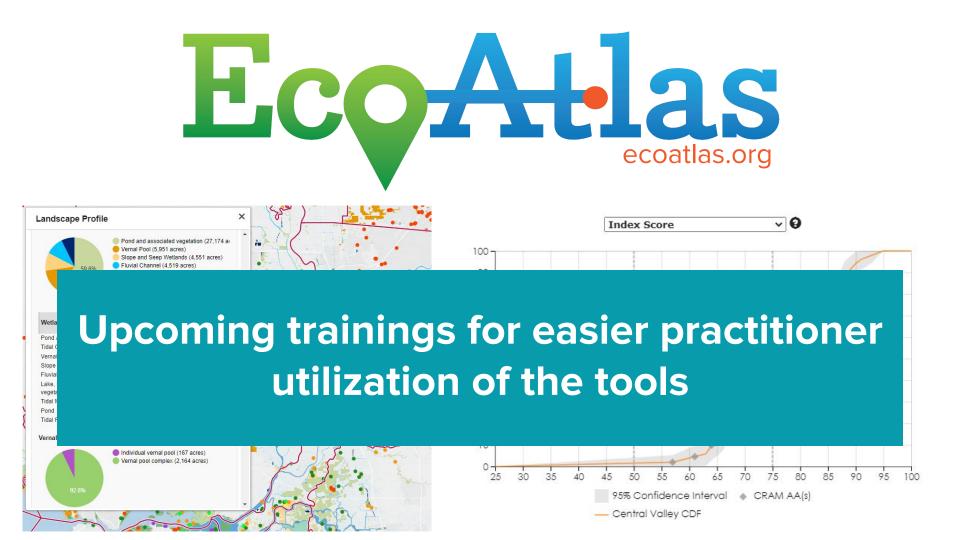

CRAM Index Score o


Access site-specific field measurements CEDEN water quality and toxicity data

Track change extent and Baylands Habitat Map progress towards regional restoration goals




- in-progress tidal wetland restoration
- other landcover types


Track change extent and progress towards **regional restoration goals**

